skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rocha, Raquel O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thomma, Bart PHJ (Ed.)
    Following leaf cuticle penetration by specialized appressorial cells, the devastating blast fungusMagnaporthe oryzaegrows as invasive hyphae (IH) in living rice cells. IH are separated from host cytoplasm by plant-derived membranes forming an apoplastic compartment and a punctate biotrophic interfacial complex (BIC) that mediate the molecular host-pathogen interaction. What molecular and cellular processes determine the temperature range for this biotrophic growth stage is an unanswered question pertinent to a broader understanding of how phytopathogens may cope with environmental stresses arising under climate change. Here, we shed light on thermal adaptation inM.oryzaeby disrupting theACB1gene encoding the single acyl-CoA-binding protein, an intracellular transporter of long-chain acyl-CoA esters. Loss ofACB1affected fatty acid desaturation levels and abolished pathogenicity at optimal (26°C) and low (22°C) but not elevated (29°C) infection temperatures (the latter following post-penetration shifts from 26°C). Relative to wild type, the Δacb1mutant strain exhibited poor vegetative growth and impaired membrane trafficking at 22°C and 26°C, but not at 29°C.In planta, Δacb1biotrophic growth was inhibited at 26°C–which was accompanied by a multi-BIC phenotype—but not at 29°C, where BIC formation was normal. Underpinning the Δacb1phenotype was impaired membrane fluidity at 22°C and 26°C but not at elevated temperatures, indicating Acb1 suppresses membrane rigidity at optimal- and suboptimal- but not supraoptimal temperatures. Deducing a temperature-dependent role for Acb1 in maintaining membrane fluidity homeostasis reveals how the thermal range for rice blast disease is both mechanistically determined and wider than hitherto appreciated. 
    more » « less
    Free, publicly-accessible full text available November 25, 2025
  2. Abstract The blast fungusMagnaporthe oryzaeproduces invasive hyphae in living rice cells during early infection, separated from the host cytoplasm by plant-derived interfacial membranes. However, the mechanisms underpinning this intracellular biotrophic growth phase are poorly understood. Here, we show that theM. oryzaeserine/threonine protein kinase Rim15 promotes biotrophic growth by coordinating cycles of autophagy and glutaminolysis in invasive hyphae. Alongside inducing autophagy, Rim15 phosphorylates NAD-dependent glutamate dehydrogenase, resulting in increased levels of α-ketoglutarate that reactivate target-of-rapamycin (TOR) kinase signaling, which inhibits autophagy. DeletingRIM15attenuates invasive hyphal growth and triggers plant immunity; exogenous addition of α-ketoglutarate prevents these effects, while glucose addition only suppresses host defenses. Our results indicate that Rim15-dependent cycles of autophagic flux liberate α-ketoglutarate – via glutaminolysis – to reactivate TOR signaling and fuel biotrophic growth while conserving glucose for antioxidation-mediated host innate immunity suppression. 
    more » « less
  3. null (Ed.)
  4. Abstract The fungusMagnaporthe oryzaecauses blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle,M. oryzaegrows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized theM. oryzaenucleoside diphosphate kinase‐encoding geneNDK1and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst—the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri‐ to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed inM. oryzaestrains lackingNDK1through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+, accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy. 
    more » « less
  5. Summary Fungal phytopathogens can suppress plant immune mechanisms in order to colonize living host cells. Identifying all the molecular components involved is critical for elaborating a detailed systems‐level model of plant infection probing pathogen weaknesses; yet, the hierarchy of molecular events controlling fungal responses to the plant cell is not clear.Here we show how, in the blast fungusMagnaporthe oryzae, terminating rice innate immunity requires a dynamic network of redox‐responsive E3 ubiquitin ligases targeting fungal sirtuin 2 (Sir2), an antioxidation regulator required for suppressing the host oxidative burst.Immunoblotting, immunopurification, mass spectrometry and gene functional analyses showed that Sir2 levels responded to oxidative stress via a mechanism involving ubiquitination and three antagonistic E3 ubiquitin ligases: Grr1 and Ptr1 maintained basal Sir2 levels in the absence of oxidative stress; Upl3 facilitated Sir2 accumulation in response to oxidative stress. Grr1 and Upl3 interacted directly with Sir2 in a manner that decreased and scaled with oxidative stress, respectively.DeletingUPL3depleted Sir2 during growth in rice cells, triggering host immunity and preventing infection. OverexpressingSIR2in the Δupl3mutant remediated pathogenicity. Our work reveals how redox‐responsive E3 ubiquitin ligases inM. oryzaemediate Sir2 accumulation‐dependent antioxidation to modulate plant innate immunity and host susceptibility. 
    more » « less